

1 Multi-hazards risks in New York City

23	Yaella Depietri ¹ , Khila Dahal ¹ , and Timon McPhearson ^{1, 2, 3}
4	¹ Urban Systems Lab, The New School, New York, NY, USA
5	² Cary Institute of Ecosystem Studies, Millbrook, New York, USA
6	³ Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
7	
8	Correspondence to: Timon McPhearson (<u>timon.mcphearson@su.se</u>)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25 26

27 Abstract

28 Megacities are predominantly concentrated along the coast and are greatly exposed to natural hazards. 29 Generally, the assessment of risk to climatic hazards does not yet fully capture the multiple interactions that 30 occur in these complex urban systems. We analyze the risk of New York City as an example of a coastal 31 megacity exposed to multiple hazards which overlap spatially and, in some cases, temporally. The aim is to 32 identify hotspots of multi-hazard risk to support the prioritization of adaptation strategies. We used socio-33 economic indicators to assess vulnerabilities and risks to three climate related hazards (heat stress, inland 34 flooding and coastal flooding) at high spatial resolution. The analysis incorporates local experts' opinions to 35 identify sources of multi-hazard risk and to weight indicators used in the risk assessment. Results show spatial 36 hotspots of multi-hazard risk principally located in coastal areas. We conclude that New York City is exposed 37 to multiple hazards that interact spatially and temporally and that the city should prioritize adaptation in its 38 coastal areas while considering possible synergies or tradeoffs adapting to spatially overlapping hazards. 39

40 Keywords

41 Adaptation, disaster risk reduction, megacities, multi-hazard risk, social vulnerability, spatial assessment, New York City

55 1. Introduction

56 Megacities, urban areas exceeding 10 M inhabitants, host 500 M people and thus 6.8 % of the global 57 population, a proportion that is projected to rise to 8.7% in 2030 (UNDESA, 2016). These urban 58 agglomerations are highly interconnected and vibrant centers in which enormous physical and intellectual 59 resources are concentrated. Mainly located in the global South and along waterways and coastal areas, 60 megacities tend to be more exposed to disasters and suffer higher social and economic losses (UNDESA, 61 2016). Earthquakes, cyclones and flooding are the major threats to megacities (Philippi, 2016). But large 62 cities also modify the local and regional environment, changing the microclimate (e.g. creating urban heat 63 islands), paving over soil and altering ecosystem processes, and building up infrastructure (e.g. roads, 64 buildings, pipes, wires), which together with projected impacts of climate change such as sea level rise, 65 contributes to magnifying hazard impacts in coastal megacities (Pelling and Blackburn, 2013). New York 66 City is a megacity located in the global North of the world and highly exposed to hydro-meteorological 67 hazards. On the 29th of October 2012, hurricane Sandy made landfall close to Atlantic City, New Jersey (US) 68 with the intensity of a category 3 storm. Located approximately 200 km north, the New York City (NYC) 69 region was severely affected by the hurricane, which surprised the city largely unprepared to cope with the 70 magnitude of such an event. The city suffered widespread damage to buildings, power outages, interruptions 71 in utility service and large-scale flooding. In the Metropolitan region 97 people lost their life, thousands were 72 displaced and economic losses amounted to more than US\$ 50 billion (Abramson and Redlener, 2012). 73 Hurricane Sandy triggered a series of responses from the local administration. Since then, the NYC Office 74 for Emergency Management has developed multiple initiatives to decrease risk to coastal storms, as described 75 in the 2014 NYC Hazard mitigation plan. Additionally, the city established the Mayor's Office for Recovery 76 and Resilience in 2014. Innovative design approaches lead to the recently approved Big U coastal resilience 77 project that is planned as a fortification of lower Manhattan to protect it from future storm surges and 78 flooding. However, coastal hazards are not the only extreme events that threaten New Yorkers. According to 79 the U.S. Centre for Disease Control and Prevention and the US Environment Protection Agency, heat waves 80 kill on average more persons than any other extreme event (CDC and EPA, 2016). Storm water overflows in 81 NYC are driven not only by extreme precipitation. Even precipitation events as low as 38 mm a day are of 82 concern to local authorities as these cause pollution issues in NYC due to the city's combined sewage 83 overflow system (Llyod and Licata, n.d.) and create surface flooding impact residents and infrastructure. 84 Hazards often overlap spatially or temporally, though this is not well addressed in research and planning. 85 More attention has traditionally been paid to the physical components of risk to hazards, looking at the joint 86 impacts that multiple hazards could have on the infrastructures and buildings within certain sensitive areas 87 or locations (e.g. Kappes et al., 2012b; van Westen et al., 2002). Less has been done to assess the socio-88 economic components of multi-hazard risk in cities in order to envisage common and more effective plans 89 and policies for disaster risk reduction and climate change adaptation (Johnson et al., 2016). Further, certain 90 policies developed to tackle individual hazards could reduce or even increase vulnerability and risk to other 91 hazards. A multi-hazard assessment plan facilitates identifying these potential synergies or tradeoffs for

92 adapted policies, and specific interventions. For example, tree planting to increase stormwater infiltration can

93 also be a synergistic strategy for the reduction of the urban heat island (UHI).

94 The objective of this study is to improve decision-making and maximize the multi-functional benefits of 95 interventions to meet complex challenges posed by multiple hazards in New York City. Using a common 96 conceptual framework and methodology for different hazards is critical for identifying hotspots of risk of 97 communities exposed to overlapping hazards. Despite these benefits, we still know little about multi-risk and 98 the occurrence of multi-hazards in urban areas. Here we empirically address this gap by focusing on NYC 99 which is an important megacity for examining multi-hazard risk given its global prominence, as being the 100 largest city in the U.S. with hundreds of billions in assets and millions of people at risk, as well as its place

as a coastal city threatened by multiple hydro-meteorological hazards potentially exacerbated by climate
change. Exploring NYC as a case study, this paper reports data on past and potential multi-hazards events in
NYC and assesses the combined socio-economic risks of residents to three different hazards (i.e. heat waves,

- 104 inland flooding and coastal flooding).
- 105 106

1.1. Multi-hazard risk assessment

107 A subgroup of hazard risk-assessments that considers more than one hazard at a time are called multi-hazard 108 risk assessments. The UNSIDR glossary of term of 2009 defines multi-hazard as "(1) the selection of multiple 109 major hazards that the country faces, and (2) the specific contexts where hazardous events may occur 110 simultaneously, cascadingly or cumulatively over time, and taking into account the potential interrelated 111 effects". The need for multi-hazard approaches is acknowledged at the local, national and international level. 112 Already in the early 1990s, the consideration of multi-hazard risk was proposed as a requirement for the 113 development of strategies aiming at sustainable urban development. The need for multi-risk assessment is 114 part of Agenda 21 for sustainable development, formulated during the UN Summit in Rio in 1992, which 115 requests "complete multi-hazard research" as part of human settlement planning and management in disaster-116 prone areas (UNEP, 1992). This was reaffirmed in the Johannesburg Declaration of Sustainable Development 117 in 2002, which required "[a]n integrated, multi-hazard, inclusive approach to address vulnerability, risk 118 assessment and disaster management, including prevention, mitigation, preparedness, response and recovery" 119 (UN, 2002, p. 20). The Hyogo Framework of Action 2005-2015 pledged for the introduction of "integrated, 120 multi-hazard approach[es] for disaster risk reduction [...] into policies, planning and programming related to 121 sustainable development, relief, rehabilitation, and recovery activities in post-disaster and post-conflict 122 situations in disaster-prone countries" (UNISDR, 2005). Recently, the Sendai Framework for Disaster Risk 123 Reduction 2015-2030, calls for disaster risk reduction practices to be multi-hazard, besides being multi-124 sectoral and inclusive. And yet, despite decades of attention, we still have little understanding of risks posed 125 by multiple hazards spatially and temporally interacting in sensitive urban area around the world. 126 There are different ways to look at how multiple hazards affect a same area, a group of subjects or objects. 127 A hazard can lead to another hazard through cascading effects (e.g. a heavy storm causing landslides) (1);

- 128 two or more hazards can simultaneously impact a same area (2); or hazards can impact in sequence a same
- 129 subject or object leading to cumulative effects (3) (Kappes et al., 2012a). Some studies have assessed certain

130 aspects of multi-hazard risk in the recent literature. Bernal et al. (2017), adopt a probabilistic approach to 131 analyze physical risk to earthquakes, landslides, and volcanic eruptions jointly. Similar approach to physical 132 risk was adopted by van Westen (2002). Liu et al. (2015) propose a multi-hazard risk framework, comparable 133 to the one we apply in this study, and but show an example of multi-hazard risk focusing on physical 134 vulnerability. Forzieri et al. (2016), look at the multi-hazard assessment in Europe linked to climate change 135 impacts, focusing on hazards features only and leaving for future investigation the vulnerability component. 136 Most of these case studies available in the literature look at physical vulnerability and risk and consider 137 potentially cascading hazards. Few studies have looked at the socio-economic component of risk in multi-138 hazards assessments (Greiving, 2006; Johnson et al., 2016). In our study we explore the socio-economic 139 vulnerability and risk using an extensive survey amongst local experts and stakeholders to identify sources 140 of multi-hazards risk and to derive weights for the different hazards considered and the vulnerability 141 indicators selected. We develop a context specific case of multi-hazard risk assessment which can be adapted 142 to other regions with variations on the choice of the hazards, vulnerability indicators and weights assigned to 143 the indicators themselves.

144 145

1.2.1 Multi-hazard risk in large urban areas

146 Urban areas worldwide tend to suffer greater fatalities and economic losses when compared to their rural 147 counterparts due to the concentration of people, infrastructures and assets as well as to inadequate 148 management (Dickson et al., 2012). The high concentration of infrastructures in urban areas (water supply 149 network, sewage systems, transportation, subways, roads and railways, energy supply network, 150 telecommunication system, green infrastructures), and even more so in megacities put them particularly at 151 risk in case of failure or damages of these critical systems (Graham, 2010). Amongst the natural hazards, 152 heat wave is a predominantly a urban hazard, meaning that higher degrees of mortality and morbidity are 153 experienced in city rather than in rural areas (Clarke, 1972; D'Ippoliti et al., 2010). In coastal cities a high 154 number of people is also exposed to storm surges, water intrusion and erosion (Nicholls and Small, 2002). 155 Coastal ecosystems are the most productive as well as the most threatened by human activity which, by 156 encroaching them, ultimately further increases risk (MA, 2005; Pelling and Blackburn, 2013).

157 Different hazards such as floods, heat waves and earthquakes, when concentrated in densely populated urban 158 areas, make multi-hazard assessment an important yet challenging task for decision makers. Some studies 159 have previously assessed multi-hazard risk in the urban context. A recent study has analyzed the risk to 160 multiple hazards including landslide, typhoon and heat wave in two districts of Hong Kong (Johnson et al., 161 2016). The study found that, despite socio-economic differences of the two districts, both present comparable 162 levels of risk. van Westen et al. (2002) looked at physical risk (of buildings and infrastructures) in a spatial 163 manner to suggest possible mitigation measures for Turrialba in Costa Rica, a city exposed to flooding, 164 landslides and earthquakes. Kappes et al. (2012b) assessed geo-physical risk of Faucon municipality located 165 in the Barcelonnette basin, Southern French Alps to debris flows, shallow landslides and river flooding to 166 support priority settings for users. Likewise, Lozoya et al. (2011) took an ecological perspective to assess 167 risk of multiple hazards such as riverine floods, storm-induced coastal floods and storm induced erosion in

168 S'Abanell urban and touristic beach of Spain, finding that cultural and regulating services were the most 169 affected by hazards in the area. However, few studies have focused on multi-hazard risk assessment with a 170 strong social component to vulnerability in coastal megacities of the developed world as we have done in 171 this study. 172 Multi-hazard mapping, which consists of "the totality of relevant hazards in a defined area" (Kappes et al., 173 2012a), is a fundamental approach for multi-hazard risk assessment in urban areas and relevant for the NYC 174 area. Such an approach allows for the identification of potential hotspots of risk and vulnerability derived 175 from spatial combination of more than one hazard. In this perspective, the effects of the hazards are 176 considered as additive, with overlapping degrees of impacts. Thus, impacts acting in the same locations, 177 without interacting causally or coinciding contemporaneously, can be considered jointly. This approach 178 facilitates the identification of structural improvements that can lead to the combined reduction of the 179 exposure to two or more hazards in urban areas. The socio-economic determinants of vulnerability, which 180 often lead to the concentration of vulnerable people in certain area of the city, are examined jointly and help 181 the identification of zones of the city more likely to suffer harm from multiple hazards and in which more 182 resources should be invested for adaptation. 183 In this paper we analyze how multiple hazards overlap spatially in New York City to support planning for 184 three key objectives: 1) to improve risk reduction through multi-purpose strategies, 2) to improve adaptive 185 capacity of the city, and 3) to suggest a potential approach for similar multi-hazard risk assessments in other 186 vulnerability urban areas and settlements. 187 188 1.2. New York City and disaster risk 189 New York City is a megacity, the largest city in USA and is located on the East coast, with approximately 190 8.2 million people in just the municipal city, with over 10,500 people per km² according to U.S. Census 191 Bureau (2010). The New York City-Newark-New Jersey metropolitan statistical area is much larger with 192 20.3 Million people living in the region closely connected socially, economically, and infrastructurally to 193 NYC1. The metropolitan area is also the largest city in the US in terms of economic activity according the 194 U.S. Census Bureau. In the city live approximately 1.4 million elderly age 60 and older, representing a 195 particular vulnerable group (especially for heat related morbidity and mortality) which constitute 17% of the 196 population and this proportion is projected to significantly increase (Goldman et al., 2014). NYC is also built 197 around a network of rivers, estuaries and islands with much of the Metropolitan region situated less than 5 m 198 above mean sea level (Colle et al., 2008) which contributes to the hazard context especially in terms of coastal 199 flooding. 200 We focus our analysis on three hazards that cause the highest human impacts in NYC (Depietri and

- 201 McPhearson, 2018): heat waves, inland flooding and coastal flooding. Heat waves are defined in NYC by
- the NYC Panel on Climate Change (NPCC) 2015 Report as three consecutive days above 90F (or about 32.2

¹ <u>https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk</u> (retrieved on March 25th 2018)

203 °C) (Horton et al., 2015a). Inland, surface flooding can be triggered by precipitation of more than 38 mm of 204 rain per day since the city's drainage system is designed to handle heavy rainfall with intensities of 1.5 inches 205 (about 38 mm) per hour in most areas of the city where sewers were built prior to 1960, and of 1.75 inches 206 (about 44 mm) per hour in locations with sewers were built after 1960 (Llyod and Licata, n.d.). Coastal 207 flooding is driven by storm surge. NYC is affected by changing climate with future projections including 208 probable higher temperatures, increasingly frequent heavy downpours, and a rising sea level that will increase 209 storm surge and coastal flooding (Horton et al., 2015a; Rosenzweig and Solecki, 2015). In the next sections, 210 we describe each hazard and its local impacts. Information about multi-hazard risk in the city is scarce in the 211 available literature. However, we have combined multiple sources of evidence of the occurrence of multi-212 hazards events through this study which are presented in section 3.1. 213 214 1.2.1. Heat waves 215 Heat waves kill approximately 400 people each year in the U.S., and have caused more deaths in since 1998 216 than any other hazard (Bernard and McGeehin, 2004). Heat waves in NYC are also the largest cause of death 217 due to socio-natural hazards (Depietri and McPhearson, 2018; NYC, 2014). Recent disastrous heat waves 218 include the July 1966 event, where the mortality rate increased by 36% (Schuman, 1972) and the summer 219 1972 heat wave which caused 253 deaths on the 24th of July only (Ellis et al., 1975). Ageing people were the 220 bulk of reported deaths during the August-September heat wave of 1973 (Ellis et al., 1975) similar to what 221 has been reported for the August 1975 heat wave in which mortality doubled mainly affecting the elderly in 222 poor sections of the society (Ellis and Nelson, 1978). According to the NYC Department of Health and 223 Mental Hygiene, 46 heat stroke deaths resulted from two heat waves in July-August 2006 while 26 heat 224 related deaths occurred during the heat wave of July 2013 (NYC, 2014, 2006). Between 2000 and 2011, 447 225 patients were treated for heat illness and 154 died (CDCP, 2013). A study by Madrigano et al. (2015) reported 226 up to 234 heat related excess death for the same period. 227 It has been documented that extreme heat impacts have been increasing at least for the period 1987-2005 228 (Anderson and Bell, 2011). However, numbers of deaths are significantly less pronounced if compared to the 229 first half of 20th century, showing an evidence of adaptation likely due to the use of air conditioning (Depietri 230 and McPhearson, 2018; Petkova et al., 2014). 231 Risk to heat waves is driven by several factors. Those with poor socio-economic status, for example black (non-Hispanic) individuals, and the socially or linguistically isolated are more likely to die during a heat 232 233 wave (Madrigano et al., 2015). People with chronic physical or mental health illnesses (i.e. cardiovascular 234 disease, obesity, neurologic or psychiatric disease) also account for a large part of the causalities, together 235 with individuals subject to alcohol or drugs abuse (CDCP, 2013; Ellis et al., 1975). Madrigano et al. (2015) 236 found that greener neighborhoods were less at risk in NYC, potentially due to decreased temperatures in 237 those areas of the city. Increased rates of poverty and higher densities of African-American populations were found to be highly correlated with the lack of green spaces in the city (Klein Rosenthal et al., 2014). Low 238 239 income and crowding where also elements of risk in the 1966 heat waves according to Schuman (1972). Still, 240 elderly were the most affected in past heat waves episodes in NYC, regardless of race (Ellis et al., 1975; Ellis

241 and Nelson, 1978). Primary indicators of heat vulnerability are relatively consistent across studies with 242 poverty, poor housing conditions, low access to air-conditioning and seniors' hypertension associated with 243 elderly death due to heat stress in NYC between 1997 to 2006 (Klein Rosenthal et al., 2014). Environmental 244 conditions, pervious land cover and aggregated surface temperatures were also found to be positively 245 associated with heat related deaths of elderly (Klein Rosenthal et al., 2014), 246 Gedzelman et al. (2003) calculated the UHI of NYC to be on average approximately 4 °C warmer than 247 surrounding temperatures in summer and autumn and 3 °C in winter and spring according to measurement 248 taken between 1997 and 1998 (Gedzelman et al., 2003). Temperature have been rising in Central Park 249 between 1900 to 2013 (Horton et al., 2015a) and it has been estimated that the temperature rose by 1.1 °C 250 between 1900 to 1997 in NYC (Knowlton et al., 2007). One third of the total warming of the city since 1900 251 was attributed to the intensification of the UHI. Projections show that this trend is likely to continue in the 252 future, with warmer temperatures in NYC in the coming decades driven by UHI and increasing temperatures 253 caused by climate change (Horton et al., 2015a). The study by Knowlton et al. (2007) showed that, despite 254 the possibility to adapt or to acclimatize to rising temperature, heat related premature deaths are likely to rise 255 in projected future climates and affect regions beyond the urban core of the city. Spatial and temporal patterns 256 of current risk combined with projects for increasing temperatures and frequency and intensity of heat waves 257 suggests the need for extensive planning and management to reduce heat risk in NYC.

258 259

1.2.2. Inland floods

260 In NYC, the built environment - dense, heavily paved, and built up, reclaimed wetlands - limit the ground's 261 capacity to absorb and drain water, raising the risk of urban or inland surface flooding. Sealed surfaces cover 262 72% of the NYC areas according to the city Department of Environmental Protection. Much of NYC's 263 infrastructure, especially in low-lying or poor drainage areas, cannot cope with little more than one inch per 264 hour of rainfall (Lane et al., 2013). According to NYC (2014), communities in low-lying areas with limited 265 drainage capacity tend to experience sewer backups, street and basement flooding that can expose them to 266 contaminated storm water and wastewater. Combined sewer overflows, occurring when sewage and storm 267 water are discharged from sewer pipes without treatment, because of the treatments plants are unable to 268 handle flows, are frequent in NYC and are a significant source of environmental pollution (Rosenzweig et 269 al., 2006). Excessive rain washes away pollutants from the streets which end up in the surrounding bodies of 270 water. Exposure to contaminated water can have both short and long-term public health effects. Flooded 271 basements and houses increase allergies, asthma and other respiratory illness from exposure to mold and 272 fungus. On the other hand, flash floods in NYC are rarely life threatening because of local topography (Lane 273 et al., 2013). 274 Precipitation has increased at a rate of approximately 20.3 mm per decade from 1900 to 2013 in Central Park

and this trend is likely to continue according to climate projections (Horton et al., 2015a). To cope with present and future risk the city needs to reduce peak discharges to the sewer system during rain events by

276 present and future risk the city needs to reduce peak discharges to the sewer system during rain events by

277 requiring greater onsite storage of stormwater runoff and slower release to the sewer system. With this

278 objective, in 2010, the city committed to a plan to invest in green infrastructures for storm water management,

279 investing US\$ 5.3 billion and saving approx. US\$ 1.5 billion by spending a portion of this investment on 280 green infrastructure in combination with traditional pipe and tanks improvements (NYC, 2010). The green 281 infrastructures planned include green and blue roofs, rain gardens, permeable pavements, bioswales and the

282 planting of street trees. However, these efforts have a limited total stormwater mitigation potential and inland 283 flooding is likely to continue to pose significant risks to urban residents in NYC.

284 285

1.2.3. Coastal flooding

286 Close to 15% of the NYC area lies within 100-year flood zone (Maantay and Maroko, 2009). The most frequent coastal storms affecting NYC are tropical storms and nor'easters (i.e. storms which originate in the 287 288 Northeast, are usually polar, and not originating from the Gulf Stream where most weather in NYC 289 originates). Even moderate nor'easters events can cause significant flooding (Colle et al., 2008) and are often 290 associated with extended periods of high winds and high water (Rosenzweig et al., 2011). Hurricanes affect 291 NYC very infrequently. Five major hurricanes of category 3 have affected the New York area between 1851 292 and 2010, most in the month of September (Blake et al., 2011), but generally lead to large damages 293 (Rosenzweig et al., 2011). In 2012, Hurricane Sandy caused 43 deaths in NYC alone and nearly half were 294 adults aged 65 or older (Kinney et al., 2015). According to Lane et al. (2013), death was caused most 295 frequently by drowning associated with the storm surge. Other deaths were caused by falling trees, falls, 296 electrocution, and other traumas. Further, Sandy caused at least \$19 billion in economic losses to the city 297 (NYC, 2013), left hundreds of thousands without power, some for many weeks (Lane et al., 2013). It has also 298 been found that power outages increase risk of death in NYC (Anderson and Bell, 2012). Five hospitals shut 299 down due to Sandy, three of them had to evacuate patients after the storm hit because of flood damage to 300 critical equipment and power losses in these facilities further complicated evacuation operations (Lane et al., 301 2013). Nearly 70.000 buildings were damaged by the storm or destroyed by related fire especially in south 302 Brooklyn, South Queens and Staten Island; the subway system was seriously affected; roads, railroads and 303 airports were flooded; while the communication system was disrupted in many areas (NYC, 2013). 304 Since Hurricane Sandy, the city established a US\$20 billion plan to adapt to climate extremes with 257 305 initiatives which span from coastal protection, economic recovery, community preparedness and response, 306 and environmental protection and remediation (NYC, 2013). Additionally, the Mayor's Office of Housing

307 Recovery Operations was established in 2013 to oversee housing recovery in NYC.

308 Increasing hurricane intensity over time has been detected (Gornitz et al., 2001; Knutson et al., 2015). On 309

the other hand, 40% of sea level rise in NYC is driven by subsidence and the rest by global climate change,

310 amounting in total to 25,4 mm per decade since 1900 (Horton et al., 2015b). Due to sea level rise, which is 311

projected to accelerate during this century to potentially reach more than 1 m in 2100, coastal flooding in 312

NYC is expected to become more frequent and intense, even in absence of changes in intensity and frequency 313 of storms (Colle et al., 2008; Gornitz et al., 2001; Horton et al., 2015b). A recent study has shown that, by

314 2030-2045, the megacity could be affected by significant flooding on average every 5 years (Garner et al.,

315 2017).

317 2. Methods

318 2.1. Multi-hazards events in New York City and indicators weighting

319 We assessed past heavy precipitation and extreme high temperatures recorded in Central Park from 1876 to 320 date and made available by the US National Oceanic and Atmospheric Administration (NOAA) to examine 321 how temporally overlapping events occur in the city as part of the study presented in Depietri and 322 McPhearson (2018). We carried out an analysis of NOAA's meteorological records cross-referenced with 323 the New York Times database of articles to analyze more in depth the occurrence of cumulative events. 324 Furthermore, we conducted a survey of local experts and decision-makers with a principal objective to collect 325 weights for indicators and sub-indicators selected but also to collect information of past and future multi-326 hazards risk in the city. The list of indicators and sub-indicators were derived from the literature. To describe 327 vulnerability, the indicators were selected as able to describe the vulnerability to the three hazards considered 328 jointly. Then we drafted a comprehensive list of the local authorities' representatives, researchers and other 329 local actors such as NGOs whose daily work is related to different aspects of vulnerability and risk to hazards. 330 The respondents to the survey were identified as being highly knowledgeable and have experience of the 331 local hazard risks and impacts. The institutional, urban planning, environmental planning, disaster risk 332 reduction, health and social sectors were represented in the survey. A total of 122 invitation e-mails were 333 sent to contact persons belonging to local and federal institutions as well as local NGOs. Of these, 10 were 334 no longer valid and we subsequently collected 65 responses with a 58% response rate. The survey was 335 anonymous but almost 60% of the respondents belonged to local jurisdictions, about 15% to NGOs, 10% to 336 local universities, while state agencies, federal agencies, and companies represented less than 5% each. 337 For the weighting of indicators, we adopted the method of budget allocation, a participatory method (Saisana 338 and Tarantola, 2002). Respondents were asked to rate each set of indicators assigning 100 points amongst 339 the listed indicators in each question. Final weights were derived by averaging the scores assigned by each 340 respondent and dividing the means by 100. The weights thus derived were normalized ones and sum to 1 (i.e. 341 100%) for each category. Unlike other methods such as analytic hierarchy process (AHP) and Delphi, the

technique of budget allocation is intuitive, computationally simple, but accurate, and therefore widely used (Saisana and Tarantola, 2002). The weights obtained are listed in Tables 1 and 2. Additional questions in the survey were also related more broadly to multi-hazard risk in NYC and the city preparedness to cope with different hazards.

346

347 2.2. Multi-hazard risk assessment

Based on the initial search of multi-hazard risk events in the city in the NOAA/NYT search and on the responses of the survey described below, we assessed multi-hazard risk to the main three hydrometeorological hazards affecting NYC described above. In this study, we emphasize the inclusion of social factors of risk by adapting our methodology from Greiving (2006) who carried out a multi-hazard risk assessment at the country level for Europe. Overall, the methodology consists of generating hazards maps, one for each hazard, a combined multi-hazards map and a common vulnerability map to the three hazards

that includes socio-economic indicators. We then obtain the final risk map as the product of the combined

355 multi-hazards map and the multi-hazard vulnerability map.

2.2.1. Hazards mapping

358	Multi-hazard risk assessment consists of an initial study of combined hazards which have overlapped
359	temporally and spatially in the megacity. We created a raster surface for each hazard by categorizing the
360	hazard intensity into five ordinal scales of 1 to 5, which are equivalent to standardized hazard levels of very
361	low, low, medium, high and very high. We used Natural Break (Jenks) method of data classification in ESRI's
362	ArcGIS software as the method considers both the span of values and the number of observations for each
363	category (Smith et al., 2007), and is widely used for classification in mapping (Huang et al., 2011).
364	Especially in the urban context, hazards present a significant social component which magnify impacts due
365	to the high modification of the environment. For creating heat wave hazard surface, we maintained that the
366	hazard affects the entire city with different intensities according to two aggravating factors: surface
367	temperature and air pollution. Surface temperature was derived from thermal band of 2011 Landsat imagery
368	captured on the 15th and 31st of July, while air pollution layer was developed based on raster surfaces of 300-
369	meter resolution for 2010 with annual average values of $PM_{2.5}$ and ozone O_3 concentrations. PM_{10} and O_3 are
370	the main contributors to extreme heat mortality besides heat itself (see Depietri et al., 2011 for a review). We
371	acquired the air pollution data from New York City Community Air Survey (NYCCAS) carried out by the
372	New York City Department of Health and Mental Hygiene, Queens College Center for the Biology of Natural
373	Systems, and Zev Ross Spatial Analysis. Indicators used to develop the heat hazard map were weighted
374	according to the survey responses (see Table 1 and Equation 1 and 2), and then combined resulting in a raster
375	surface with values ranging from 1 to 5.
376	
377	$AP = 0.483 \ O + 0.517 \ PM$ (Eq. 1)

011		(24.1)
378	HW = 0.632 ST + 0.367 AP	(Eq. 2)

379

356 357

where AP stands for air pollution, O for ozone and PM for particulate matter smaller than 2.5µm. HW standsfor heat wave hazard and ST for surface temperature.

382 The inland flooding map was derived through a spatial interpolation of 311 calls for street flooding (data 383 available between January 2010 and December 2015) and basement flooding (data available between July 384 2011 and December 2015). The 311 calls were obtained from a spatial database developed and maintained 385 by the city of New York which comprises of all sorts of complaint calls. When preparing the inland flooding 386 layer, we removed from the dataset the complaint points that had been recorded during or one day after the 387 event of coastal storms to maintain differences between precipitation driven inland flooding and coastal 388 flooding driven by storm surges. The dates and times of storm surges in NYC coastal area were obtained 389 from NOAA's storm events database² under the keywords "coastal flooding", "high surf", "tropical storm",

² <u>https://www.ncdc.noaa.gov/stormevents</u> (retrieved on February 23rd 2017)

390

391 does not account for possible differences in the likelihood of reporting flooding amongst populations (e.g. 392 depending on income). However, this is the only available dataset on inland flood occurrence and allows us 393 to consider one of the most frequent and perennial natural hazards affecting NYC - flooding driven by 394 precipitation. 395 In the case of coastal flooding, a map was obtained from the NYC Office of Emergency Management (OEM) 396 with hurricane inundation zones published in 2013. Local authorities suggested that we adopt the hazard map 397 produced for Hurricane Sandy as this would be a more conservative starting point. However, we opted for 398 the general map considering multiple levels of hazard as this had predefined categories of hazard and thus 399 was more inclined to be compared with the other hazards. 400 The hazards' weights reported in Table 1 indicate that, according to the respondents, the higher impacts 401 would be caused by coastal hazards. This result might be justified by considering the recent occurrence of 402 Hurricane Sandy and its high impacts which triggered high concern amongst local authorities. A final multi-403 hazard map (H) was generated by adding weighted values of the three hazard layers (IF - inland flooding; CF 404 - coastal flooding), as presented in Equation 3. The resultant composite hazard layer also has values ranging 405 between 1 and 5 to represent the five respective classes of hazard intensity. 406 407 H = 0.378 HW + 0.205 IF + 0.417 CF(Eq. 3) 408 409 The weighted linear combination of the three hazards intensities considers the hazards to spatially overlap

"storm surge/tide". The 311 calls dataset has nonetheless some limitations worth a mention. For instance, it

410 without any additional quantifiable interactions.

411

412 Table 1. Hazard indicators selected, and weights derived from the survey.

		Weight	Indicator	Weight	Sub-	Weight
					indicator	
Hazards (H)	Heat waves (HW)	0.378	Surface temperature (ST)	0.632		
			Air pollution	0.367	Ozone (O)	0.483
			(AP)		Particulate	0.517
					Matter	
					<2.5µm (PM)	
	Inland flooding (IF)	0.205	311 calls			
	Coastal flooding	0.417	Hurricane]		
	(CF)		inundation zones			

413 414 415

2.2.2. Vulnerability and risk maps

416 To be compatible with computation of hazard layers, we developed raster surfaces of 30m spatial resolution

417 for different socio-economic and demographic variables relevant for the three hazards, describing the three

418 components of vulnerability as listed in Table 2. For this reason, we disaggregated the 2010 census data made

419 available by the US Census bureau at the block group level. Disaggregation of census data using dasymetric

420 approaches to a finer spatial scale follows Mennis and Hultgren (2006). We used the number of residential 421 units, land use type, and building type as ancillary information to convert demographic totals from census 422 block groups to spatially corresponding cadastral lots for each vulnerability indicator. The disaggregated data 423 layers were then resampled to a spatial resolution of 30 m to maintain uniformity with the spatial resolution 424 of hazard data layers. These data were used to derive a vulnerability map based on indicators describing 425 exposure, susceptibility and lack of coping capacity. Selection of these indicators stemmed from the review 426 of available literature covered in sections 1.3.1 to 1.3.3. 427 Vulnerability is defined as the "propensity of exposed elements such as physical or capital assets, as well as 428 human beings and their livelihoods, to experience harm and suffer damage and loss when impacted by single 429 or compound hazard events" (Birkmann et al., 2013, p. 195). This "vulnerability" perspective in risk 430 reduction particularly looks at the socio-economic, institutional and cultural conditions of people and 431 physical assets which can be affected by a hazard as well as at their capacity to prevent and cope with the 432 impacts of that event. In Birkmann et al. (2013, p. 200), vulnerability is described through three components: 433 a) exposure, "the extent to which a unit of assessment falls within the geographical range of a hazard event"; 434 b) susceptibility, referring to the "predisposition of elements at risk (social and ecological) to suffer harm" 435 resulting from the levels of fragilities, disadvantageous conditions and relative weaknesses; and c) lack of 436 resilience or of coping capacity, meaning "limitations in terms of access to and mobilization of the resources 437 of a community or a social-ecological system in responding to an identified hazard". 438 The first step in the socio-economic vulnerability assessment was to identify the exposed subjects. Exposure 439 (E) was calculated as the number of inhabitants (P) for each 30 x 30 m spatial unit. The other two components 440 of vulnerability are susceptibility (S) and lack of coping capacity (CC). We selected eight different variables 441 (Table 2) from a list of indicators identified with the literature review for mapping vulnerability. Like the 442 hazards mapping described above, we reclassified each of the indicators into five intensity categories 443 represented by the values of 1-5 in such a way that 5 represents the highest level of intensity. For example, 444 smaller values in median income layer represent higher degree of susceptibility and hence were given higher 445 intensity values. The two components of vulnerability (i.e. S and CC) were calculated according to Equation 446 4 and 5. 447 448 S = 0.351 EL + 0.212 C + 0.191 I + 0.170 AA + 0.117 NS(Eq. 4) 449 CC = 0.516 L + 0.484 HH(Eq. 5) 450 451 Where EL stands for elderly, C for children, I for median income, AA for African Americans, NS for no 452 schooling, L speak no English, HH one-person household. We aggregated the indicators as a weighted sum, 453 as each indicator contributes for a fraction of the susceptibility or lack of coping capacity. The S and CC 454 layers thus generated have values ranging between 1 and 5. 455 456 Table 2. Vulnerability indicators and weights derived from the survey.

	Component	Indicator	Weight
Vulnerability (V)	Exposure (E)	Population (P)	
	Susceptibility (S)	Pop over 65(El)	0.351
		Children (<18) (C)	0.212
		1- Median income (I)	0.191
		African Americans (AA)	0.170
		No schooling completed (NS)	0.117
	Lack of coping	Speak no English (L)	0.516
	capacity (CC)	One-person household (HH)	0.484

457

Some indicators (i.e. homes in deteriorated or dilapidated buildings, mold in home, asthma, heart attack hospitalizations, overweight, adults reporting heavy drinking, crowding, air conditioning, adults with personal doctor and adults with health insurance) were considered but excluded in the final list because they were not available at the low scale for NYC or because some were not relevant for the three hazards when jointly considered. Respondents to the survey also suggested some additional indicators to consider and are summarized in the results section.

The final vulnerability (V) map was generated by adding exposure (E), susceptibility (S) and lack of coping capacity (CC) layers with equal weights (Equation 6).

466

$$467 V = \frac{1}{3}E + \frac{1}{3}S + \frac{1}{3}CC (Eq. 6)$$

468

477

We aggregated the three components of vulnerability by summing equally weighted values as we considered
each component to equally contribute to the final vulnerability as determined by the definitions presented
above.

472 Risk to natural hazards, such as hydro-meteorological, climatological or geophysical hazard, is the 473 combination of the probability or likelihood in time and space of a natural hazard to occur and to affect a 474 vulnerable system (UNISDR, 2015). In the disaster risk reduction community, risk is defined as the product 475 of hazard and vulnerability. The final aggregated risk map was calculated by multiplying the final aggregated 476 hazard map with the vulnerability map (see Equation 7).

478	R = H * V	(Eq. 7
479		

Where R is risk, H is multi-hazards and V vulnerability. We multiplied hazard per vulnerability as, according to the definition of risk, with no hazard or no vulnerabilities there would be no risk. The final risk map thus derived comprises of 16 classes with the values ranging from 1 to 25. As for the hazard and vulnerability maps mentioned above, the aggregated risk is also displayed using five intensity classes (Figure 8 in results section).
Our method of aggregation, which first quantifies the indicators of hazard and vulnerability into five ordinal

485 Our method of aggregation, which first quantifies the indicators of hazard and vulnerability into five ordina

486 categories and then uses weighted linear combination, primarily stems from the existing literature. Previous 487 mainstream studies on hazard risk mapping have documented the robustness and accuracy of this method

488 (Greiving, 2006; Greiving et al., 2006; Johnson et al., 2016; Michael and Samanta, 2016; Zhou et al., 2016).

489 The final aggregation (i.e. the risk map), as a product of two composite layers, is based on the actual definition

490 of risk (i.e. the product of hazard and vulnerability).

491 To compare the plausibility of our results, we also followed an additional method of aggregation, which is 492 collectively described as the fuzzy-defined weighted combination (Aydi et al., 2013; Janke, 2010). We 493 followed the same procedural steps, weights, and aggregation formulae except that the numerical values of 494 each of the hazard and vulnerability layers were standardized between 0 and 1 (i.e. 0-100%) instead of the 495 five ordinal classes. When displayed the final risk layer by reclassifying into five categories based on natural

- five ordinal classes. When displayed the final risk layer by reclassifying into five categories based on naturalbreak (Jenks), the map is highly comparable to the final map generated following the method we describe
- 497 above.
- 498

499 **3.** Results

500 3.1. The qualitative results of the NOAA-NYT search and the survey

501 Various interrelated multi-hazards incidents in NYC were reported by the New York Times, especially at the 502 end of the 19th century beginning of the 20th, for example city inhabitants seeking relief from heat in the 503 surrounding forests but were then stricken by lightings as they were taken by surprise by an unexpected 504 thunderstorm. Thousands of people commonly use beaches as a source of cooling (especially Coney Island) 505 and parks. Yet parks used to provide cooling relief, given occurrence of multiple hazards, were also a threat. 506 People caught in the city and that were looking for shelter under a street tree or park trees were hit by a 507 lightning or died because an electric wire broke due to high wind and which struck the residents. Lightning 508 also often caused fires. Other people were taken by surprise on boats or swimming looking for relief in the 509 breeze or the cool water and were injured or died due to by the sudden appearance of a thunderstorm. Power 510 outages have also been caused by storms following a heat wave that cut power for air conditioning and affect 511 the transport system, especially in the more recent times. Thus, relief from heat often comes at the price of 512 human lives.

513 Another example involves the interaction between hurricanes and coastal flooding. These, if occurring in the 514 winter, have been followed by snowstorms that rendered more difficult rescue and recovery operations, as in 515 the case of the aftermath of hurricane Sandy. Oils spills and the release of other toxic substances have also 516 been caused by a coastal storm or inland flooding event. This was the case of Hurricane Irene in 2011 when 517 heating oil tanks were overturned by flood waters in the basements of houses causing widespread pollution. 518 519 Beyond providing weights for our list of indicators, the stakeholders who compiled the questionnaire were 520 also asked to provide information related to past and present multi-risk events as well as strategies that they 521 would prioritize for the city. In a multi-hazard perspective, the results of the survey indicated that heat waves

522 in NYC would highly positively interact (i.e. increasing their impacts) with droughts, but also with inland

523 and coastal flooding, although these would have opposed interactions too. Inland and coastal flooding can

524 have additive impacts if they occur at the same time or successively. Furthermore, respondents indicated that

525 other interactions between the wider ranges of hazards affecting NYC have occurred in the past and those

- 526 that can occur in the future. These results are summarized in Table 3 and 4 respectively. In our study we
- 527 cover most of these situations although further analysis can be envisaged to better understand the interaction
- 528 between the hazards and infrastructures failures chiefly.
- 529
- 530 Table 3. List of multi-hazard events that happened in the past according to the respondents of the
- 531 questionnaire.
- 532

Multi-hazard evets that already occurred in NYC		
Hurricane	Cold spell	Inland flooding
Heat waves	Thunderstorms	Inland flooding
Hurricane	Infrastructure failure	
Hurricane	Infrastructure failure	initialità Hootani

533 534

 Table 4. List of multi-hazards events that the city should adapt to as these could occur in the future.

535

Combinations of events that the city should adapt to		
Coastal flooding	Exposure to toxic substances	
Coastal flooding	Inland flooding	
Coastal flooding	Cod Spell	
Coastal storms	Power outages	
Heat waves	Hurricane	
Heat waves	Power outages	
Heat waves	Severe thunderstorm	
Heat waves	Drought	

536

537 3.2. Multi-hazard risk assessment

538 Figures 1 a, b, and c present the mapped analytical results for each of the three hazards considered. Except

539 for heat stress, which is distributed across the whole city with points of low hazard intensity corresponding

540 to the urban parks, the hazards intensities are mainly concentrated along the coast, especially in Manhattan

541 and in Brooklyn.

a. Map of the heat stress based on surface temperature and air pollution

b. Map of the inland flooding based on the 311 calls for street flooding or basement flooding

 ${\mathfrak c}.$ Hurricane inundation zones based on the map provided by the Office of Emergency Management

⁵⁴⁵ 546 Figure 1 a, b and c. Spatial variation in heat hazard, inland flooding hazard, and coastal flood hazard for 547 New York City. 548 549 550 Figure 2 displays the joint multi-hazard map with higher intensities in most of the coastal areas. The Coastal 551 flooding had in fact been assigned a higher weight with respect to the other two hazards. The city is largely 552 unprepared to cope with flooding and is highly exposed to this type a hazard, a condition that was particularly 553 clear after Hurricane Sandy. Inland flooding was shown to be most intense along the coast, further 554 strengthening the presence of hazards along coastal areas. 555 556

557

Figure 2. Spatial variation in the combined hazards including weights derived through expert input.

558

a. Map of exposure

b. Map of susceptibility

c. Map of lack of coping capacity 564 565 Figure 3 a, b and c. Spatial variation in three components of vulnerability (exposure, susceptibility and 566 lack of coping capacity) to multiple hazards. 567 568 Figure 3a shows the exposure of the city based on the population. Since Manhattan has the highest density, 569 it is where the highest exposure values are found. Parts of Brooklyn and the Bronx also have high densities 570 but are overall less concentrated than Manhattan. The susceptibility map of the city (Figure 3b) shows that 571 the most fragile members of the population in socio-economic terms are in some parts of Brooklyn and the 572 Bronx. As most people living alone are in Manhattan, this area shows higher values of lack of coping 573 capacity. While linguistic isolation (non-English speaking) explains some lack of coping capacity in part of 574 Brooklyn and the Bronx. 575

576 577 578

579

Figure 4. Map of Vulnerability

- 580 The resultant vulnerability map (Figure 4) shows highly vulnerable populations located mainly in the Bronx,
- large parts of Brooklyn and some parts of Manhattan (such as Harlem) and the Queens. Staten Island appearsas the least vulnerable compared to other parts of the city.
- The survey's respondents suggested other important indicators that can be considered in a vulnerability assessment (see Table 5). These fall into the categories of indicators that we had to exclude either because they were not directly relevant to the three hazards we focused on jointly or because data were unavailable at the scale we conducted our analysis. Despite their exclusion from the study, we report these results as a useful piece of information for further research on the subject.
- 589 Table 5. Indicators that have been suggested by the survey and that could be further integrated in this type
- 590 of assessment depending on the availability of the data.

Additional Indicators		
Disabled	Air conditioning and cooling centers	
Power housing	Health conditions	
Type of housing structure	Proximity to transportation	
Political orientation as a measure of awareness	Housing conditions	
Family size	Proximity to nuisance flooding	
Social isolation	Proximity to industries	
Location of the house	Undocumented residents	
Home ownership vs rent occupier	Below poverty Status	
Social Cohesion	Access of equity capital	

a. Multi-hazard risk map

b. Detail of the multi-hazard risk map

	b . Detail of the multi-mazard fisk map
594 595 596 597	Figure 5 a and b. Final multi-hazard risk map and detail of the high spatial resolution risk map for Lower Manhattan and parts of Brooklyn.
598	Combining multiple hazards and vulnerability assessment results in a final multi-hazard risk assessment
599	(Figure 5a). We find that the coastal areas of Brooklyn, Manhattan and Harlem are the most at risk from the
600	three hazards considered. Figure 5b, shown in detail, demonstrate the relatively high spatial resolution of the
601	analysis and the utility for decision-making for prioritizing investments within neighborhoods and down to
602	building scale for multi-hazard risk reduction.
603	Adapting to coastal threats results to be a priority for the city. An outcome that is made further pressing by
604	the opinions gathered through the survey amongst local stakeholder who see the city the least prepared to
605	cope with coastal flooding, second only to earthquakes (see Figure 6).
606	

Figure 6. Survey result's regarding the level of city's preparedness to impactful hazards potentially affectingNYC out of a maximum of 5 points.

610

611 4. Discussion

612 From our qualitative analysis and survey responses, NYC is found to be at risk to multiple and overlapping 613 events, spatially and temporally. Multi-hazard risk is therefore a reality that is worth exploring in the city. 614 Hazards interactions were found to have happened or be likely to happen in conjunction with coastal flooding 615 or hurricanes, heat waves and inland flooding. We focused on these three hazards to analyze socio-economic 616 vulnerability and multi-hazard risk and see how these are spatially distributed. Socio-economic vulnerability 617 is concentrated in central areas of Brooklyn where the poorest segments of the population reside and in the 618 Bronx. Parts of Manhattan also resulted to be highly vulnerable, seemingly due to the concentration of elderly 619 and people living alone in these areas of the city or to poor neighborhoods such as Harlem. These factors, 620 despite the wealth characterizing Manhattan, explain the high level of multi-hazards risk that the 621 neighborhood needs to face. Coastal areas of the city facing the open sea as well as large areas of Manhattan 622 and the Bronx resulted to be also the most at risk from the multiple hazards considered. We suggest that 623 adaptation strategies should prioritize these areas while considering that soft or hard infrastructures put in 624 place need to be adapted also inland and heat waves alleviation for instance through enhanced infiltration 625 and reduction of the urban heat island. No part of the city is in fact totally devoid of potential impacts from 626 these hazards and synergies and tradeoffs should be carefully evaluated. Coastal flooding also appears to be 627 one of the hazards the city is least prepared to, followed by heat waves and inland flooding, amongst the 628 hazards considered in this study. These results support the choice of the city to invest resources to improve 629 coastal areas, such as Jamaica Bay and its remaining wetlands. 630 The quantitative analysis we conducted principally considered the social aspects of vulnerability and risk. 631 We suggest this is a key innovation given that most of the previous studies tended to focus on physical

- 632 vulnerability (other examples are Greiving, 2006; Johnson et al., 2016). It allowed to show that parts of the
- 633 city potentially affected to multiple hazards not necessarily correspond to the areas where most of the

634 vulnerable people live. However, the reviewed literature and the collected experts' opinions that point to the 635 need to complement with indicators of physical dimension of vulnerability especially when one consil-*ders 636 risk to flooding. Some of the indicators that could be used are: the conditions of exposed buildings; roads, 637 railroads and the subway system; and other critical infrastructures that supply energy, support communication 638 or treat wastewater. 639 Furthermore, the weights were derived from expert-input through a survey methodology where experts 640 ranked indicators and sub-indicators. This allowed to develop an assessment specific for the case of the city 641 of New York. For instance, with respect to hazards' weights, these indicated that the higher impacts would 642 be caused by coastal hazards, a result that might depend on the recent awareness raised by disastrous impacts 643 caused by Hurricane Sandy and generally the high impact of these hazards have on the city although if not 644 frequent. Nonetheless, we initially calculated risk through all steps described but with equal weighting. The 645 results still showed how coastal areas of Brooklyn, Harlem and the Bronx are the most at risk to multiple 646 hazards. This suggests that the methodology is robust and would not lead to significantly different results 647 with a change of weights. 648 The quantitative aspects of this work also show the significance of each step of the methodology. Each map 649 provides valuable information to detecting risk in the city beyond the final aggregated risk map. For instance, 650 the maps components of vulnerability show that high exposure (where most of the people are located) does 651 not correspond to areas where people are the most vulnerable. Also, the final risk map, when compared with 652 the combined hazards maps, shows that the main determinant of risk is the multi-hazard level rather than the 653 vulnerability of the population. 654 The choice of the 311 calls to represent inland flooding allowed us to include an element of the disaster scape 655 of NYC which has not been explored in previous studies. Despite the drawbacks mentioned, areas identified 656 at high risk of inland flooding varied little with changes in the classification method used but may need 657 further validation. 658 The methodology can potentially be expanded to accommodate other indicators, for instance to produce 659 hazard-specific vulnerability maps instead of a common assessment. With a broader range of indicators and 660 by conducting hazard specific vulnerability assessments each step of the methodology would be even more 661 relevant. 662 The detailed spatial resolution of the risk assessment provides decision makers with the possibility to 663 prioritize areas of intervention at the very narrow scale, down to the building and street level. By considering 664 the three hazards jointly, no inhabited area of the city results at no risk, while some present accumulation of 665 risk where to prioritize interventions. 666 667 5. Conclusions 668 This study presents a comprehensive assessment of the relevance of a multi-hazard approach in a coastal

669 megacity and its application to three of the main hazards that affect New York City: heat waves, coastal

670 flooding and inland flooding.

671 Through the responses to the questionnaire and the NOAA NYT database search, we show that risk to 672 multiple, temporally and spatially interacting hazards in NYC is substantial. The steps of quantitative 673 assessment showed that risk to multiple hazards in NYC is mainly driven by the distribution of the hazards 674 rather than by vulnerability. The concentration of people, the susceptibility and the lack of coping capacity 675 play a secondary role in determining risk which is instead dominated by the magnitude and distribution of 676 the hazards combined. 677 For the three hazards considered, we focus on a significant spatial overlap in where hazards and combined 678 risk exist in the city. The results showed that the city is significantly most at risk in the coast areas of midtown 679 and downtown Manhattan, Harlem and the coastal areas of Brooklyn, especially those surrounding the 680 Jamaica bay. A predominant role is played by coastal flooding. The analysis of these results suggest that 681 decision makers should prioritize those strategies that protect the city from coastal flooding while considering 682 that those areas are also affected by other hazards and could be jointly addressed. A result validated by the responses from the survey which show how local stakeholders feel that the city is little prepared to cope with 683 684 coastal flooding. 685 Further research should consider more indicators of physical vulnerability, if data is available, and cascading 686 effects provoked by climatological hazards and leading to failure of critical infrastructures dangerous for 687 human health (e.g. power outages and exposure to toxic substances). 688 We suggest that it is important for the city to adopt a multi-hazard approach to understanding climate related 689 risk and for designing and prioritizing action to maximize interventions and investments in ways that reduce 690 risk for multiple hazards. 691 692 693 694 695 696 Acknowledgements 697 We thank Jaskirat Randhawa for data visualization assistance, Bill Solecki and Erin Friedman for feedback 698 and local experts for input on weightings. Research was supported by the Urban Resilience to Extreme 699 Weather-Related Events Sustainability Research Network (URExSRN; NSF grant no. SES 1444755) and 700 through the 2015-2016 BiodivERsA COFUND call for research proposals, with the as national funders: the 701 Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning; Swedish 702 Environmental Protection Agency; German aeronotics and space research centre; National Science Centre 703 (Poland); the Research Council of Norway; and Spanish Ministry of Economy and Competitiveness. Yaella 704 Depietri was partially supported by the Zeff fellowship at the Technion 705 706

- 707
- 101
- 708

709 References 710 711 Abramson, D.M., Redlener, I., 2012. Hurricane Sandy: lessons learned, again. Disaster 712 Med. Public Health Prep. 6, 328-329. 713 Anderson, B., Bell, M., 2011. Heat Waves and Mortality in New York, NY. 714 Epidemiology 22, S20. https://doi.org/10.1097/01.ede.0000391719.31370.34 715 Anderson, G.B., Bell, M.L., 2012. Lights out: Impact of the August 2003 power outage 716 on mortality in New York, NY. Epidemiol. Camb. Mass 23, 189-193. 717 https://doi.org/10.1097/EDE.0b013e318245c61c 718 Aydi, A., Zairi, M., Dhia, H.B., 2013. Minimization of environmental risk of landfill site 719 using fuzzy logic, analytical hierarchy process, and weighted linear combination 720 methodology in a geographic information system environment. Environ. Earth 721 Sci. 68, 1375-1389. https://doi.org/10.1007/s12665-012-1836-3 722 Bernal, G.A., Salgado-Gálvez, M.A., Zuloaga, D., Tristancho, J., González, D., Cardona, 723 O.-D., 2017. Integration of Probabilistic and Multi-Hazard Risk Assessment 724 Within Urban Development Planning and Emergency Preparedness and 725 Response: Application to Manizales, Colombia. Int. J. Disaster Risk Sci. 8, 270-726 283. https://doi.org/10.1007/s13753-017-0135-8 727 Bernard, S.M., McGeehin, M.A., 2004. Municipal Heat Wave Response Plans. Am. J. 728 Public Health 94, 1520–1522. https://doi.org/10.2105/AJPH.94.9.1520 729 Birkmann, J., Cardona, O.D., Carreño, M.L., Barbat, A.H., Pelling, M., Schneiderbauer, 730 S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., Welle, T., 2013. Framing 731 vulnerability, risk and societal responses: the MOVE framework. Nat. Hazards 732 67, 193-211. https://doi.org/10.1007/s11069-013-0558-5 733 Blake, E.S., Lansea, C.W., Gibney, E.J., 2011. The deadliest, costliest, and most intense 734 United States Tropical Cyclones from 1851 to 2100 (and other frequently 735 requested Hurricane facts). National Weather Service, National Hurricane Center, 736 Miami, Florida. 737 CDC, EPA, 2016. Climate change and extreme heat. What you can do prepare. The U.S. 738 Environmental Protection Agency (EPA) and the Centers for Disease Control and 739 Prevention (CDC). 740 CDCP, 2013. Heat Illness and Death - New York City, 2000-2011 (No. Vel. 62, N. 31), 741 Morbidity and Mortality Weekly Report. U.S. Department of Health and Human 742 Services, Centers for Disease Control and Prevention. 743 Clarke, J.F., 1972. Some effects of the urban structure on heat mortality. Environ. Res. 5, 744 93-104. https://doi.org/10.1016/0013-9351(72)90023-0 745 Colle, B.A., Buonaiuto, F., Bowman, M.J., Wilson, R.E., Flood, R., Hunter, R., Mintz, 746 A., Hill, D., 2008. New York City's Vulnerability to Coastal Flooding: Storm 747 Surge Modeling of Past Cyclones. Bull. Am. Meteorol. Soc. 89, 829-841. 748 https://doi.org/10.1175/2007BAMS2401.1 749 Depietri, Y., McPhearson, T., 2018. Changing urban risk: 140 years of climatic hazards 750 in New York City. Clim. Change 1-14. https://doi.org/10.1007/s10584-018-2194-751 2 752 Depietri, Y., Renaud, F.G., Kallis, G., 2011. Heat waves and floods in urban areas: a 753 policy-oriented review of ecosystem services. Sustain. Sci. 7, 95-107. 754 https://doi.org/10.1007/s11625-011-0142-4

755 756	Dickson, E., Baker, J.L., Hoornweg, D., Asmita, T., 2012. Urban Risk Assessments: An Approach for Understanding Disaster and Climate Risk in Cities. The World
757	Bank.
758	D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., Katsouvanni, K.,
759	Kirchmaver, U., Analitis, A., Medina-Ramón, M., Paldy, A., Atkinson, R.,
760	Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iñiguez, C., Perucci, C.A.
761	2010 The impact of heat wayes on mortality in 9 European cities: results from the
762	EuroHEAT project Environ Health 9 37 https://doi.org/10.1186/1476-069X-9-
763	37
764	Ellis, F.P., Nelson, F., 1978. Mortality in the elderly in a heat wave in New York City,
765	August 1975. Environ. Res. 15, 504–512. https://doi.org/10.1016/0013-
766	9351(78)90129-9
767	Ellis, F.P., Nelson, F., Pincus, L., 1975. Mortality during heat waves in New York City
768	July, 1972 and August and September, 1973, Environ, Res. 10, 1–13.
769	https://doi.org/10.1016/0013-9351(75)90069-9
770	Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca,
771	M., Bianchi, A., Rojas, R., Cid, A., 2016. Multi-hazard assessment in Europe
772	under climate change. Clim. Change 137, 105–119.
773	https://doi.org/10.1007/s10584-016-1661-x
774	Garner, A.J., Mann, M.E., Emanuel, K.A., Kopp, R.E., Lin, N., Alley, R.B., Horton, B.P.,
775	DeConto, R.M., Donnelly, J.P., Pollard, D., 2017. Impact of climate change on
776	New York City's coastal flood hazard: Increasing flood heights from the
777	preindustrial to 2300 CE. Proc. Natl. Acad. Sci. 201703568.
778	https://doi.org/10.1073/pnas.1703568114
779	Gedzelman, S.D., Austin, S., Cermak, R., Stefano, N., Partridge, S., Quesenberry, S.,
780	Robinson, D.A., 2003. Mesoscale aspects of the Urban Heat Island around New
781	York City. Theor. Appl. Climatol. 75, 29–42. https://doi.org/10.1007/s00704-002-
782	0724-2
783	Goldman, L., Finkelstein, R., Schafer, P., Pugh, T., 2014. Resilient Communities:
784	Empowering Older Adults in Disasters and Daily Life. The New York Accademy
785	of Medicine.
786	Gornitz, V., Couch, S., Hartig, E.K., 2001. Impacts of sea level rise in the New York City
787	metropolitan area. Glob. Planet. Change 32, 61-88.
788	https://doi.org/10.1016/S0921-8181(01)00150-3
789	Graham, S., 2010. Disrupted cities: When infrastructure fails. Routledge.
790	Greiving, S., 2006. Multi-risk assessment of Europe's regions, in: Birkmann, J. (Ed.),
791	Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient
792	Societies. pp. 210–26.
793	Greiving, S., Fleischhauer, M., Lückenkötter, J., 2006. A Methodology for an integrated
794	risk assessment of spatially relevant hazards. J. Environ. Plan. Manag. 49, 1–19.
795	https://doi.org/10.1080/09640560500372800
796	Horton, R., Bader, D., Kushnir, Y., Little, C., Blake, R., Rosenzweig, C., 2015a. New
797	York City Panel on Climate Change 2015 Report. Chapter 1: Climate
798	Observations and Projections: NPCC 2015 Report Chapter 1. Ann. N. Y. Acad.
799	Sci. 1336, 18–35. https://doi.org/10.1111/nyas.12586

 Hoton, K., Lutte, C., Gohniz, V., Dadet, D., Oppenheimer, 2015. New York City Panel on Climate Change 2015 Report Chapter 2: Sea Level Rise and Coastal Storms: NPCC 2015 Report Chapter 2: Ann. N. Y. Acad. Sci. 1336, 36–44. https://doi.org/10.1111/nyas.12593 Huang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvma.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.jenvma.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.jenvma.2013. Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.jdtr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiller, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577–590. https://doi.org/10.1016/j.aggeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.	800	Harton P. Little C. Cornitz V. Peder D. Oppenhaimer M. 2015h New York City
 Storms: NPCC 2015 Report Chapter 2. Ann. N. Y. Acad. Sci. 1336, 36–44. https://doi.org/10.1111/nyas.12593 Huang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577–590. https://doi.org/10.1016/j.ageog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5: Public Health Impacts under a changing climate in the New York City region. Am. J. Public Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlon, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public	800	Denal on Climate Change 2015 Deport Chanter 2: See Level Disc and Coastel
 Stotins, NPCC 2015 Report Chapter 2, Ann. N. 1, Acad. Sci. 1536, 30–44. https://doi.org/10.1111/nyas.12593 Huang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.jidrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazard susing an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.aggog.2011.07.002 Kinney, P. L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.106/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Publ	801	Stormer NDCC 2015 Deport Chapter 2. App. N. V. Acad. Sci. 1226. 26. 44
 https://doi.org/10.1111/j.yas.12.593 Huang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.jagpeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bend	802 802	Storinis. NPCC 2015 Report Chapter 2. Ann. N. 1. Acad. Sci. 1550, 50–44.
 Fluang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone not in the City spatial patient of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazard susing an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.jageog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropic	803	Itups.//doi.org/10.1111/Ityds.12.395
 of land surface temperatures, land cover and neignorhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manage. 92, 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscal	804	Huang, G., Zhou, W., Cadenasso, M.L., 2011. Is everyone not in the city? Spatial pattern
 characteristics in Baltimore, MD. J. Environ. Manage. 92, 1735–1759. https://doi.org/10.1016/j.jenyman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.japgeog.2011.07.002 Kinney, P. L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health P1, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Veechi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 28	805	of land surface temperatures, land cover and neighborhood socioeconomic
 https://doi.org/10.1016/j.penvman.2011.02.006 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazard using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P. L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5: Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Veechi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCL1-D-15-0129.1 Lane, K., Charles-	806	characteristics in Baltimore, MD. J. Environ. Manage. 92, 1/53–1/59.
 Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577–590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J. Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios J. Clim. 28, 7203–7224. httt	807	https://doi.org/10.1016/j.jenvman.2011.02.006
 Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vul	808	Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in Colorado.
 Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quin, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155	809	Renew. Energy 35, 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014
 Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323. https://doi.org/10.1016/j.ijdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.ageog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liva, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., F	810	Johnson, K., Depietri, Y., Breil, M., 2016. Multi-hazard risk assessment of two Hong
 https://doi.org/10.1016/j.jdrr.2016.08.023 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.agpeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R, Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCL1-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geo	811	Kong districts. Int. J. Disaster Risk Reduct. 19, 311–323.
 Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liv, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. h	812	https://doi.org/10.1016/j.ijdrr.2016.08.023
 multi-hazard risk: a review. Nat. Hazards 64, 1925–1958. https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCL1-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata	813	Kappes, M.S., Keiler, M., von Elverfeldt, K., Glade, T., 2012a. Challenges of analyzing
 https://doi.org/10.1007/s11069-012-0294-2 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCL1-D15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liv, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Liyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet f	814	multi-hazard risk: a review. Nat. Hazards 64, 1925–1958.
 Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCL1-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemmet for New York City's people and environment. <l< td=""><td>815</td><td>https://doi.org/10.1007/s11069-012-0294-2</td></l<>	815	https://doi.org/10.1007/s11069-012-0294-2
 for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577– 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemmet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in be	816	Kappes, M.S., Papathoma-Köhle, M., Keiler, M., 2012b. Assessing physical vulnerability
 590. https://doi.org/10.1016/j.apgeog.2011.07.002 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodo	817	for multi-hazards using an indicator-based methodology. Appl. Geogr. 32, 577-
 Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K., Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménz, J.A., 2011. A methodological framework for multi- hazard risk assessment	818	590. https://doi.org/10.1016/j.apgeog.2011.07.002
 Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	819	Kinney, P.L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K.,
 2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	820	Quinn, A., Arend, M., Pullen, J., 2015. New York City Panel on Climate Change
 Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67–88. https://doi.org/10.1111/nyas.12588 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	821	2015 ReportChapter 5: Public Health Impacts and Resiliency: NPCC 2015 Report
 Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat- related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	822	Chapter 5. Ann. N. Y. Acad. Sci. 1336, 67-88. https://doi.org/10.1111/nyas.12588
 related mortality in New York City, 1997–2006. Health Place 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi-hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/i.envsci.2011.05.002 	823	Klein Rosenthal, J., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability to heat-
 https://doi.org/10.1016/j.healthplace.2014.07.014 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemmet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi-hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/i.envsci.2011.05.002 	824	related mortality in New York City, 1997–2006. Health Place 30, 45–60.
 Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney, P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi-hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	825	https://doi.org/10.1016/j.healthplace.2014.07.014
 P.L., 2007. Projecting heat-related mortality impacts under a changing climate in the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	826	Knowlton, K., Lynn, B., Goldberg, R.A., Rosenzweig, C., Klein Rosenthal, J., Kinney,
 the New York City region. Am. J. Public Health 97, 2028–34. Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	827	P.L., 2007. Projecting heat-related mortality impacts under a changing climate in
 Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini, G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	828	the New York City region. Am. J. Public Health 97, 2028–34.
 G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	829	Knutson, T.R., Sirutis, J.J., Zhao, M., Tuleya, R.E., Bender, M., Vecchi, G.A., Villarini,
 the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	830	G., Chavas, D., 2015. Global Projections of Intense Tropical Cyclone Activity for
 Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	831	the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5
 Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	832	Scenarios. J. Clim. 28, 7203–7224. https://doi.org/10.1175/JCLI-D-15-0129.1
 Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	833	Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013.
 Vulnerability Assessment [WWW Document]. J. Environ. Public Health. https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	834	Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and
 https://doi.org/10.1155/2013/913064 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	835	Vulnerability Assessment [WWW Document], J. Environ, Public Health.
 Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.Q., 2015. A three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	836	https://doi.org/10.1155/2013/913064
 three-level framework for multi-risk assessment. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	837	Liu, Z., Nadim, F., Garcia-Aristizabal, A., Mignan, A., Fleming, K., Luna, B.O., 2015, A
 Eng. Syst. Geohazards 9, 59–74. https://doi.org/10.1080/17499518.2015.1041989 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water management for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	838	three-level framework for multi-risk assessment Georisk Assess Manag Risk
 Llyod, E., Licata, A., n.d. One New York City: One Water. Sustainable water managemnet for New York City's people and environment. Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	839	Eng Syst Geohazards 9 $59-74$ https://doi.org/10.1080/17499518.2015.1041989
 ki, Erioda, F., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	840	Llvod F. Licata A. n.d. One New York City: One Water Sustainable water
 Lozoya, J.P., Sardá, R., Jiménez, J.A., 2011. A methodological framework for multi- hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/j.envsci.2011.05.002 	841	management for New York City's people and environment
 hazard risk assessment in beaches. Environ. Sci. Policy 14, 685–696. https://doi.org/10.1016/i.envsci.2011.05.002 	842	Lozova LP Sardá R Jiménez LA 2011 A methodological framework for multi-
844 https://doi.org/10.1016/i.envsci.2011.05.002	843	hazard risk assessment in heaches Environ Sci Policy 14 685_606
111105.//401.012/10.1010/1.011001.2011.0J.002	844	https://doi.org/10.1016/i.envsci.2011.05.002
1	511	https://tot.org/10.1010/j.on/0012011.05.002

845	MA, 2005. Ecosystems and human well-being: current state and trends: findings of the
846	Condition and Trends Working Group of the Millennium Ecosystem Assessment,
847	The millennium ecosystem assessment series. Island Press, Washington, DC.
848	Maantay, J., Maroko, A., 2009. Mapping urban risk: Flood hazards, race, & amp;
849	environmental justice in New York. Appl. Geogr. 29, 111–124.
850	https://doi.org/10.1016/j.apgeog.2008.08.002
851	Madrigano, J., Ito, K., Johnson, S., Kinney, P.L., Matte, T., 2015. A Case-Only Study of
852	Vulnerability to Heat Wave–Related Mortality in New York City (2000–2011).
853	Environ. Health Perspect. https://doi.org/10.1289/ehp.14081/8
834 955	Angel Literrelation Contern Coord Inf Soi 22, 170, 104
833 956	Areal Interpolation. Cartogr. Geogr. Int. Sci. 33, 1/9–194.
830 857	nups://doi.org/10.1559/152504000/79077509
0J/ 050	Wichael, E.A., Samania, S., 2010. Landshide vulnerability mapping (LVW) using
030 050	techniques, Model, Earth Syst. Environ 2, 88, https://doi.org/10.1007/s40808
0 <i>39</i> 860	016 01/1 7
861	Nicholls R I Small C 2002 Improved estimates of coastal population and exposure to
862	hazards released Fos Trans Am Geophys Union 83 301
863	https://doi.org/10.1029/2002E0000216
864	NYC 2014 Heat-related Deaths in New York City 2013 (No. 47) Eni Data Brief New
865	York City Denartment of Health and Mental Hygiene.
866	NYC, 2013. A stronger more resilient New York. The City of New York.
867	NYC, 2010. NYC green infrastructure plan: A sustainable strategy for clean waterways.
868	City of New York. New York, USA.
869	NYC, 2006. Deaths Associated with Heat Waves in 2006 (Special Report), NYC Vital
870	Signs Investigation Report. New York City Department of Health and Mental
871	Hygiene.
872	NYCEM, 2014. NYC's risk landscape: a guide to hazard mitigation. New York City
873	Emergency Management, Department of City Planning and Mayor Office of
874	Recovery and Resiliency.
875	Pelling, M., Blackburn, S. (Eds.), 2013. Megacities and the coast: risk, resilience, and
876	transformation. Routledge/Taylor & Francis Group, London ; New York.
877	Petkova, E.P., Gasparrini, A., Kinney, P.L., 2014. Heat and Mortality in New York City
878	Since the Beginning of the 20th Century: Epidemiology 25, 554–560.
879	https://doi.org/10.1097/EDE.00000000000123
880	Philippi, C., 2016. Megacities Pushing the Boundaries of our Industry. Risk trends and
881	insurance challenges. Allianz Global Corporate & Specialty.
882	Rosenzweig, C., Gaffin, S., Parshall, L. (Eds.), 2006. Green Roots in the New York
883	Metropolitan Region. Research Report. Columbia University Centre for Climate
884	Systems Reserach and NASA Goddard Institute for Space Studies, New York.
885	Rosenzweig, C., Solecki, W., 2015. New York City Panel on Climate Change 2015
000 007	Report Introduction: NPUC 2015 Report Introduction. Ann. N. Y. Acad. Sci.
00/ 000	1550, 5-5. nups://doi.org/10.1111/nyas.12025
000 990	D Joseh K LoPlane A Leichenke D Linkin M Maion D O'Crady M
007 800	R., Jacob, K., Ledianc, A., Leichenko, K., Linkin, M., Major, D., O Grady, M., Datrick J. Sussman F. Vohe G. Zimmerman P. 2011 Developing accepted
070	rautek, L., Sussinan, E., Tone, G., Zimmerman, K., 2011. Developing coastal

Natural Hazards and Earth System Sciences Discussions

891	adaptation to climate change in the New York City infrastructure-shed: process,
892	approach, tools, and strategies. Clim. Change 106, 93-127.
893	https://doi.org/10.1007/s10584-010-0002-8
894	Saisana, M., Tarantola, S., 2002. State-of-the-art report on current methodologies and
895	practices for composite indicator development. Citeseer.
896	Schuman, S.H., 1972. Patterns of urban heat-wave deaths and implications for
897	prevention: Data from New York and St. Louis during July, 1966. Environ. Res.
898	5, 59-75. https://doi.org/10.1016/0013-9351(72)90020-5
899	Smith, M.J. de, Goodchild, M.F., Longley, P.A., 2007. Geospatial Analysis: A
900	Comprehensive Guide to Principles, Techniques and Software Tools, 2nd Revised
901	edition. ed. Matador, Leicester.
902	UN, 2002. Johannesburg Declaration on Sustainable Development. Plan of
903	Implementation of the World Summit on Sustainable Development. United
904	Nations; World Summit on Sustainable Development (UN).
905	UNDESA, 2016. The World's Cities in 2016: Data Booklet. United Nations, Department
906	of Economic and Social Affairs, Population Division, New York, NY.
907	UNEP, 1992. Agenda 21. Tech. rep., United Nations Environment Programme.
908	UNISDR, 2015. Global Assessment Report on Disaster Risk Reduction. Making
909	Development Sustainable: The future of Disasster Risk Management. United
910	Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland.
911	UNISDR, 2005. Hyogo Declaration.
912	van Westen, C.J., Montoya, L., Boerboom, L., Badilla Coto, E., 2002. Multi-hazard risk
913	assessment using GIS in urban areas: a case study for the city of Turrialba, Costa
914	Rica. Presented at the The Regional Workshop on Best Practices in Disaster
915	Mitigation: lessons learned from the Asian urban disaster mitigation program and
916	other initiatives, Bali Indonesia, pp. 120–136.
917	Zhou, S., Chen, G., Fang, L., Nie, Y., 2016. GIS-Based Integration of Subjective and
918	Objective Weighting Methods for Regional Landslides Susceptibility Mapping.
919	Sustainability 8, 334. https://doi.org/10.3390/su8040334
920	